Example 9. Comparing ProteoMinerTM Method with Limited Digestion Method [0096] The efficiencies of native digestion and ProteoMinerTM methods for HCP enrichments were tested and compared using mAb5 containing HCP impurities. As shown in FIG. 7, a total of 63 HCPs were identified with high confidence using the ProteoMinerTM method of the present application. A total of 25 HCPs were identified with high confidence using the native digestion method. As shown in FIG. 8, in comparing the ProteoMinerTM and native digestion methods, 21 HCPs were identified by both methods. In comparing the ProteoMinerTM and native digestion methods, 26 HCPs were identified by both methods. Table 14 shows the 63 HCPs which were found in mAb5 sample using ProteoMinerTM method of the present application. TABLE 14 | Accession No. | Protein Name | |--------------------------|--| | G3I6T1 | Putative phospholipase B-like 2 | | G3HXN7 | Beta-hexosaminidase | | G3HLX3 | Alpha-N-acetylglucosaminidase | | Q9JKY1 | Peroxiredoxin-1 | | G3I4W7 | Cathepsin D | | G3H892 | Aminoacylase-1A | | G3I255 | L-lactate dehydrogenase | | G3GZB2 | Acid ceramidase | | G3H533 | Peptidyl-prolyl cis-trans isomerase | | G3IBF4 | Serine protease HTRA1 | | G3I3N5 | V-type proton ATPase subunit C | | G3I2K6 | Hippocalcin-like protein 1 | | G3GR64 | Inter-alpha-trypsin inhibitor heavy chain H5 | | G3GRS9 | N-acetylgalactosamine-6-sulfatase | | G3IBH0 | Metalloproteinase inhibitor 1 | | G3I3Y6 | Glutathione S-transferase P | | G3I1V3 | Fibronectin | | A0A061IFE2 | Liver carboxylesterase 1-like protein | | G3GUR1 | Complement C1r-A subcomponent | | G3GXZ0 | Protein-glutamine gamma-glutamyltransferase 2 | | G3I8R9 | | | G3HGW6 | 78 kDa glucose-regulated protein | | | Laminin subunit alpha-5 | | G3I7U9 | Serine protease HTRA2, mitochondrial | | G3GVH3 | Uncharacterized protein C17orf39 | | A0A061IQB8 | Ubiquitin-60S ribosomal protein L40-like isoform 2 | | G3IAQ0 | Alpha-enolase | | G3IFA9 | Transcription elongation factor B polypeptide 2 | | G3II12 | Calcium-binding protein 39 | | G3I3K5 | G-protein coupled receptor 56 | | G3I5N6 | Insulin-like growth factor-binding protein 4 | | G3HXL1 | Poly(RC)-binding protein 1 | | G3HH30 | Aldose reductase | | Q9EPP7 | Cathepsin Z | | Q9WV24 | Beta-2-microglobulin | | A0A061HWZ7 | Exosome complex component RRP46-like protein | | A0A061II04 | Protein S100 | | G3HI03 | U4/U6 small nuclear ribonucleoprotein Prp4 | | A0A061IB69 | Fructose-bisphosphate aldolase | | G3I5L3 | Annexin | | A0A061IDC7 | Sp110 nuclear body protein | | G3H935 | TyrosinetRNA ligase | | A0A061I0W7 | Brain-specific serine protease 4-like protein | | G3IEU2 | Protein DJ-1 | | P22629 | Streptavidin | | A0A061IMN7 | Anionic trypsin-2-like protein | | A0A061IK25 | Protein-L-isoaspartate | | A0A061INB9 | C-X-C motif chemokine | | A0A061I4J0 | Prefoldin subunit 2-like protein | | G3IG05 | Annexin | | | Perilipin-4-like protein | | AUAU0111 Y4 | 1 cmpm-4-nkc protein | | A0A061I1Y4
A0A061IEQ5 | Sphingomyelin phosphodiesterase | TABLE 14-continued | HCPs found in mAb5 sample. | | |----------------------------|---| | Accession No. | Protein Name | | A0A061I523 | Procollagen C-endopeptidase enhancer 1 | | G3HIM4 | Cell division control protein 42-like | | G3H2A5 | Vacuolar protein sorting-associated protein 29 | | G3GV64 | Mammalian ependymin-related protein 1 | | G3HPZ5 | Macrophage-capping protein | | G3HD94 | Desmoplakin | | G3HAN8 | Adenosylhomocysteinase | | A0A061I2S4 | Putative out at first protein like protein (Fragment) | | A0A061HXN7 | Gelsolin | | G3HN65 | Ras suppressor protein 1 | | G3HH39 | Elongation factor 1-alpha 1 | | G3IKC3 * | Glutathione S-transferase Mu 6 | | G3GVW2 * | Putative hydrolase RBBP9 | | G3GTT2 * | C-C motif chemokine | | G3I4E8 * | Fatty acid-binding protein, adipocyte | What is claimed is: 1. A method of identifying host cell protein (HCP) impurities in a sample, comprising: contacting the sample to solid support, wherein said sample includes at least one high-abundance peptide or protein, wherein interacting peptide ligands have been attached to said solid support, and wherein said HCP impurities can bind to the interacting peptide ligands; washing said solid support using a solution comprising a surfactant providing an eluent; subjecting said eluent with an enzymatic digestion condition to generate components of isolated HCP impurities; and identifying components of the isolated HCP impurities using a mass spectrometer. - 2. The method of claim 1, wherein the surfactant is a phase transfer surfactant, an ionic surfactant, an anionic surfactant, a cationic surfactant, or combinations thereof. - 3. The method of claim 1, wherein the surfactant is sodium deoxycholate, sodium lauryl sulfate, or sodium dodecylbenzene sulphonate. - **4**. The method of claim **1**, wherein a concentration of the at least one high-abundance peptide or protein is about at least 1000 times, 10,000 times, 100,000 times or 1,000,000 times higher than a concentration of the each HCP impurity. - **5**. The method of claim **1**, wherein the interacting peptide ligands are a library of combinatorial hexapeptide ligands. - **6**. The method of claim **1**, wherein the HCP impurities are quantified using the mass spectrometer, wherein a detection limit of the each HCP impurity is about 0.05-0.1 ppm. - 7. The method of claim 1, wherein the at least one high-abundance peptide or protein is an antibody, a bispecific antibody, an antibody fragment, a Fab region of an antibody, an antibody-drug conjugate, a fusion protein, a protein pharmaceutical product, or a drug. - 8. The method of claim 1, wherein an enzyme of the enzymatic digestion reaction is trypsin. - 9. The method of claim 1, wherein the mass spectrometer is an electrospray ionization mass spectrometer, nano-electrospray ionization mass spectrometer, or a triple quadrupole mass spectrometer, wherein the mass spectrometer is coupled to a liquid chromatography system. - 10. The method of claim 1, wherein the mass spectrometer is capable of performing LC-MS (liquid chromatography-